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ABSTRACT: Mathematical Induction, usually used to prove theorems of
the form Vn € IN(Q{n)}for a proposition @, can also be employed to prove
theorems of the form Vo € K(Q(z)) for certain @ and for KX C IR such that
K is closed and bounded below. The induction theorem is presented and
applied to give direct proofs of several comparison theorems for integral and
differential inequalities. '
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1. INTRODUCTION

Applications of mathematical induction permeate many classical mathemat-
ical disciplines such as set theory (Suppes {5]), analysis {Royden [4]), algebra
{van der Waerden {8}), and logic {Shoenfield [3]). Induction is generally used
to establish conjectures of the following form: The proposition @}(n) is true
; for all n in the set of natural numbers IV, Standard notation tacitly utilized
here for this statement is ¥n € IV (Q(n)). where “Q{n)" means “Q(n) is
: true”. Two common forms of induction are “weak” and “strong” (or “com-
plete”) induction (Mendelson {2}):

Weak Induction: ¥ (1) and for all k € IN, Q{k + 1) whenever Q(k), then
Yo e IN {Q(n)).
Weak Induction implies Strong Induction:

Strong Induction: I for all n € IV, Q(n) holds whenever @Q{m) for all
m € IN such that m < n, then ¥n € IN(Q(n)).
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Induction works for the natural numbers because of special ordering
properties on IV which ensure that each n € IV has a next largest {successor)
element n 4 1. The Property of Transfinite Induction (see e.g. Mendelson
{2]) generalizes strong induction to well-ordered sets (linearly ordered sets
for which every nonempty subset has a least element):

Property of Transfinite Induction: Let < be a well-ordering for the set
W. Suppose that for all w € W, we have Q(w) whenever Q(y) forally € W
such that y < w. Then Y € W(Q(w)).

Proof: Define Q(w) as the statement “not Q(w)”. Suppose that for some
z € W, Q(2). Then the truth set {z € W}@Q(2)} is a nonempty subset of
W, and hence contains a least element w. Thus, for all y < w, Q{y), and so
Q(w), which is a contradiction. 0

In general, induction cannot be used to establish results of the form
Yz € JR(Q(J:)) because the set of real numbers IR is not well-ordered under
the usual order “less than”. For example, even though the proposition z <3
holds whenever y < 3 for all y < z, it 18 not the case that # < 3 for all
z € IR

There are, however, ways to use induction on certain closed subsets of
IR for certain predicates .

Theorem 1: Let a € IR. Suppose the truth set A = {t &€ R{Q(L)) is an open
set in IR and, for allt € [a,00), Q%) whenever Q(z) for all z € [a,1). Then

Vit € [, oo} (@(2))-

Proof: Suppose that Q{t) for some ¢ € [¢,0). Then the set (IR—A)N[a, o0) '
is nonempty, closed, and bounded below, and thus contains its infimum 7.
Hence, for all z € [a,T], we have Q(z), and so @(T), which is a contradiction.
0

Note that the second hypothesis of Theorem 1 vacuously implies Q{a).
In applications, one must take care to verify this case.

Theoremn 1 can easily be extended {o any subset of IR which is closed
and bounded below:

Theorem 2: Suppose K C IR is closed and bounded below in IR; A = {t €
R|Q(t)} is open in R; and for allt € K, Q(t), whenever Q(z) for allz € K
such that x < t. Then ‘

Wte K_(Q(t))-
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2. APPLICATIONS

To illustrate applicable directions in which induction on closed, bounded
below subsets of IR may be utilized, we focus on some classical problems
of differential and integral inequalities. Theorem 1 can be used to give di-
rect proofs of many general comparison theorems for integral and delay-
differential inequalities. These comparison theorems are commonly demon-
strated by contradiction, with each proof reiterating a particular incarnation
of the proof of Theorem 1. Besides abstracting a method of direct proof,
Theorem 1 also provides a certain intuition for the truth of such comparison

results. The next example concerns one of the basic comparison theorems
for integral inequalities.

Example 1 {(Comparison Theorem for Integral Inequalities):

Theorem (Lakshmikantham and Leela (1]): Let J = [o,00), K € C’{J xdJ %
R, R), z,y, f € C|J,R)], and K{s,1,z) be stricily increasing in.x for each
fized (s,t). If

i) 2(t) < FO+ [ K(s,t,2(s))ds ¥ € [a,00),

i) y(t) = f(8) + fL K(s,t.y(s))ds Vi € [a,00),
i) z(a) < y(a),

then
z{t) < y(t) ¥t > a.

Proof: Continuously extend @ and y to IR by defining z(¢) = z(e) and
y(t) = y{a) for £ < a. Then the truth set {t € Rjz(t) < y(¢}} is open in K.

Let T € [a,00). If T = a, then 2(T) < y{T). Otherwise, assumne
a(t) < y(t) for all £ € [, T'). Then

T
(I < f(T)~+~f K{s,T,x(s))ds

,
< KT+ [ K Ts))ds <y
' O

Example 2 (Comparison Theorem for Delay-Differential Equations):

Theorem: Let J = [to,00), f € ClJ x R, R, z,y € C{IR, R), y be non-
decreasing, and f(t,z) be nondecreasing in z for cach fized t. If for fived
o € (0, 00)

i) 2'(t) < ft,z(t — o)) Vit
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i) ¢'(8) = ft,y(2)) Vi=to,
i) z(t) < y(t) Vte€ [to — «,to}
then :
:L'(f.),y("ﬁ} it ?., to.

Proof: The truth set {t € R|z(t) < y(t)} is open in IR.
Let T € [tg,00). If T = ty, then (T} < y(I'}). Otherwise, assume
z(t) < y(t) for all t € [£5, T). If 7 € [£o, T, then

() < f(rm(r = @) < flry(r = a)) < fr.y(r)) < ¥'(7),

and hence z/(t) < ¢'(¢) for all ¢ € [te,T]. Thus, flzlrt,"(s)ds < ftf y'{s)ds,
and so 2(T) — z(to) < y(T) — ylto). By iil), 2(T) < y(T). 0

The final example establishes the asymptotic behavior of solutions to
an integral inequality, given that the kernel is dominated by, a function of a
particular form. : :

Example 3: Let g be positive and continuous on [0, 00) x {,oe), and k > 0.
Positive continuous solutions of the integral inequality

t
o(t) < / ot — algla,da+ LK, € [0,00)
A

are of exponential order as { — oo provided ¢(a,?) £ %:_ everywhere in
[0, 00) x {0, 6¢). In particular, solutions decay exponentially if 0 < & < L.

We will show that 2(t) < k' for all £ € [0,00).

Extend z to | by defining x(¢) = x(0) for all + < 0. Then the truth
set {t € R|z(t) < k**1} is open in IR since z is continuous. Let T' € [0,cc).
If T = 0, then 2(T) = (0 € 4k < k = k7" Otherwise, assume that
2(#) < k' whenever ¢t € [0,T). Then

"
o{T) < / (T — a)gle, Tda + ;1;!:7"“
0 4
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