INDUCTION ON CLOSED, BOUNDED-BELOW SUBSETS OF R

Shandell M. Henson¹ and Thomas G. Hallam²

¹Department of Mathematics, University of Tennessee
Knoxville, TN 37996-1300, USA

²Department of Mathematics and Graduate Program in Ecology University of Tennessee, Knoxville, TN 37996-1300, USA

ABSTRACT: Mathematical Induction, usually used to prove theorems of the form $\forall n \in \mathbb{N}(Q(n))$ for a proposition Q, can also be employed to prove theorems of the form $\forall x \in K(Q(x))$ for certain Q and for $K \subset \mathbb{R}$ such that K is closed and bounded below. The induction theorem is presented and applied to give direct proofs of several comparison theorems for integral and differential inequalities.

AMS (MOS) subject classification: 03B99, 45M99, 54A99.

1. INTRODUCTION

Applications of mathematical induction permeate many classical mathematical disciplines such as set theory (Suppes [5]), analysis (Royden [4]), algebra (van der Waerden [6]), and logic (Shoenfield [3]). Induction is generally used to establish conjectures of the following form: The proposition Q(n) is true for all n in the set of natural numbers \mathbb{N} . Standard notation tacitly utilized here for this statement is $\forall n \in \mathbb{N} \ (Q(n))$, where "Q(n)" means "Q(n) is true". Two common forms of induction are "weak" and "strong" (or "complete") induction (Mendelson [2]):

Weak Induction: If Q(1) and for all $k \in \mathbb{N}$, Q(k+1) whenever Q(k), then

 $\forall n \in I N \ (Q(n)).$

Weak Induction implies Strong Induction:

Strong Induction: If for all $n \in \mathbb{N}$, Q(n) holds whenever Q(m) for all $m \in \mathbb{N}$ such that m < n, then $\forall n \in \mathbb{N}(Q(n))$.

144 Henson and Hallam

Induction works for the natural numbers because of special ordering properties on \mathbb{N} which ensure that each $n \in \mathbb{N}$ has a next largest (successor) element n+1. The Property of Transfinite Induction (see e.g. Mendelson [2]) generalizes strong induction to well-ordered sets (linearly ordered sets for which every nonempty subset has a least element):

Property of Transfinite Induction: Let < be a well-ordering for the set W. Suppose that for all $w \in W$, we have Q(w) whenever Q(y) for all $y \in W$ such that y < w. Then $\forall w \in W(Q(w))$.

Proof: Define $\tilde{Q}(w)$ as the statement "not Q(w)". Suppose that for some $z \in W$, $\tilde{Q}(z)$. Then the truth set $\{z \in W | \tilde{Q}(z)\}$ is a nonempty subset of W, and hence contains a least element w. Thus, for all y < w, Q(y), and so Q(w), which is a contradiction.

In general, induction cannot be used to establish results of the form $\forall x \in \mathbb{R}(Q(x))$ because the set of real numbers \mathbb{R} is not well-ordered under the usual order "less than". For example, even though the proposition $x \leq 3$ holds whenever $y \leq 3$ for all y < x, it is not the case that $x \leq 3$ for all $x \in \mathbb{R}$.

There are, however, ways to use induction on certain closed subsets of R for certain predicates Q.

Theorem 1: Let $a \in \mathbb{R}$. Suppose the truth set $A = \{t \in \mathbb{R} | Q(t)\}$ is an open set in \mathbb{R} and, for all $t \in [a, \infty)$, Q(t) whenever Q(x) for all $x \in [a, t)$. Then

$$\forall t \in [a, \infty)(Q(t)).$$

Proof: Suppose that $\tilde{Q}(t)$ for some $t \in [a, \infty)$. Then the set $(\mathbb{R} - A) \cap [a, \infty)$ is nonempty, closed, and bounded below, and thus contains its infimum T. Hence, for all $x \in [a, T]$, we have Q(x), and so Q(T), which is a contradiction. \Box

Note that the second hypothesis of Theorem 1 vacuously implies Q(a). In applications, one must take care to verify this case.

Theorem 1 can easily be extended to any subset of $I\!\!R$ which is closed and bounded below:

Theorem 2: Suppose $K \subset \mathbb{R}$ is closed and bounded below in \mathbb{R} ; $A = \{t \in \mathbb{R} | Q(t)\}$ is open in \mathbb{R} ; and for all $t \in K$, Q(t), whenever Q(x) for all $x \in K$ such that x < t. Then

 $\forall t \in K(Q(t)).$

2. APPLICATIONS

To illustrate applicable directions in which induction on closed, bounded below subsets of IR may be utilized, we focus on some classical problems of differential and integral inequalities. Theorem 1 can be used to give direct proofs of many general comparison theorems for integral and delaydifferential inequalities. These comparison theorems are commonly demonstrated by contradiction, with each proof reiterating a particular incarnation of the proof of Theorem 1. Besides abstracting a method of direct proof, Theorem 1 also provides a certain intuition for the truth of such comparison results. The next example concerns one of the basic comparison theorems for integral inequalities.

Example 1 (Comparison Theorem for Integral Inequalities):

Theorem (Lakshmikantham and Leela [1]): Let $J = [a, \infty)$, $K \in C[J \times J \times J]$ $[R,R], x,y,f \in C[J,R],$ and K(s,t,x) be strictly increasing in x for each fixed (s,t). If

$$\begin{array}{ll} \text{i)} & x(t) \leq f(t) + \int_a^t K(s,t,x(s)) ds & \forall t \in [a,\infty), \\ \text{ii)} & y(t) \geq f(t) + \int_a^t K(s,t,y(s)) ds & \forall t \in [a,\infty), \\ \text{iii)} & x(a) < y(a), \end{array}$$

ii)
$$y(t) \ge f(t) + \int_a^t K(s, t, y(s)) ds \quad \forall t \in [a, \infty),$$

ii)
$$x(a) < y(a)$$
,

then

$$x(t) < y(t) \quad \forall t \ge a.$$

Proof: Continuously extend x and y to IR by defining x(t) = x(a) and y(t) = y(a) for t < a. Then the truth set $\{t \in \mathbb{R} | x(t) < y(t)\}$ is open in \mathbb{R} . Let $T \in [a, \infty)$. If T = a, then x(T) < y(T). Otherwise, assume x(t) < y(t) for all $t \in [a, T)$. Then

$$x(T) \le f(T) + \int_a^T K(s, T, x(s)) ds$$

$$< f(T) + \int_a^T K(s,T,y(s))ds \le y(T).$$

Example 2 (Comparison Theorem for Delay-Differential Equations):

Theorem: Let $J = [t_0, \infty), f \in C[J \times \mathbb{R}, \mathbb{R}], x, y \in C^1[\mathbb{R}, \mathbb{R}], y$ be nondecreasing, and f(t,x) be nondecreasing in x for each fixed t. If for fixed $\alpha \in (0, \infty)$

i)
$$x'(t) \leq f(t, x(t-\alpha)) \quad \forall t \geq t_0$$
,

ii)
$$y'(t) \geq f(t, y(t)) \quad \forall t \geq t_0$$

ii)
$$y'(t) \ge f(t, y(t)) \quad \forall t \ge t_0$$
,
iii) $x(t) < y(t) \quad \forall t \in [t_0 - \alpha, t_0]$

then

$$x(t), y(t) \quad \forall t \geq t_0.$$

Proof: The truth set $\{t \in \mathbb{R} | x(t) < y(t)\}$ is open in \mathbb{R} .

Let $T \in [t_0, \infty)$. If $T = t_0$, then x(T) < y(T). Otherwise, assume x(t) < y(t) for all $t \in [t_0, T)$. If $\tau \in [t_0, T]$, then

$$x'(\tau) \le f(\tau, x(\tau - \alpha)) \le f(\tau, y(\tau - \alpha)) \le f(\tau, y(\tau)) \le y'(\tau),$$

and hence $x'(t) \leq y'(t)$ for all $t \in [t_0, T]$. Thus, $\int_{t_0}^T x'(s)ds \leq \int_{t_0}^T y'(s)ds$, and so $x(T) - x(t_0) \leq y(T) - y(t_0)$. By iii), x(T) < y(T).

The final example establishes the asymptotic behavior of solutions to an integral inequality, given that the kernel is dominated by a function of a particular form.

Example 3: Let g be positive and continuous on $[0, \infty) \times [\infty)$, and k > 0. Positive continuous solutions of the integral inequality

$$x(t) \le \int_0^t x(t-a)g(a,t)da + \frac{1}{2}k^{t+1}, \ t \in [0,\infty)$$

are of exponential order as $t \to \infty$ provided $g(a,t) \le \frac{k^a}{2t}$ everywhere in $[0,\infty) \times (0,\infty)$. In particular, solutions decay exponentially if 0 < k < 1.

We will show that $x(t) < k^{t+1}$ for all $t \in [0, \infty)$.

Extend x to IR by defining x(t) = x(0) for all t < 0. Then the truth set $\{t \in \mathbb{R} | x(t) < k^{t+1}\}$ is open in \mathbb{R} since x is continuous. Let $T \in [0, \infty)$. If T=0, then $x(T)=x(0\leq \frac{1}{2}k < k=k^{T+1}$. Otherwise, assume that $x(t) < k^{t+1}$ whenever $t \in [0,T)$. Then

$$x(T) \le \int_0^T x(T-a)g(a,T)da + \frac{1}{2}k^{T+1}$$

$$< k^{T+1} \int_0^T \frac{1}{2T}da + \frac{1}{2}k^{T+1}$$

$$= k^{T+1}.$$

ACKNOWLEDGMENTS

This research was supported in part by the U.S. Environmental Protection Agency through Cooperative Agreement XE 819569.

REFERENCES

- [1] Lakshmikantham, V. and Leela, S., Differential and Integral Inequalities, Academic Press, New York 1969, p. 315.
- [2] Mendelson, E., Introduction to Mathematical Logic, Van Nostrand, Princeton 1964.
- [3] Shoenfield, J. R., Mathematical Logic, Addison-Wesley, Reading 1967.
- [4] Royden, H. L., Real Analysis, Macmillan, New York 1963.]
- [5] Suppes, P., Axiomatic Set Theory, Van Nostrand, Princeton 1960.
- [6] van der Waerden, B. L., Modern Algebra, Ungar, New York 1953.
- [7] Walter, W., Differential and Integral Inequalities, Springer-Verlag, New York 1970.